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According to cancer statistics[1, 2], lung cancer is the most common and

deadly cancer worldwide, mainly because the vast majority of patients

have no obvious clinical symptoms and are already in an advanced stage

of the disease at initial diagnosis. Low-dose computed tomography

(LDCT) screening can help detect early-stage lung lesions and has

reduced lung cancer mortality by 20%[3]. However, this has led to an

increasing number of lung nodules being detected, including a large

number of false-positive cases, with more than 95% of the nodules found

being benign [4], and it is extremely difficult to make a differential

diagnosis and perform various treatment measures for these nodules. The

Fleischner Society guidelines and the Lung CT Screening Reporting and

Data System (Lung- RADS) recommend that the size and growth pattern

be closely observed when pulmonary nodules are detected[5, 6]. However,

awareness of the recommendations and treatment decisions in clinical
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practice vary between radiologists and pulmonologists [7], and intensive

long-term follow-up CT may increase radiation dose to patients and cause

psychological problems for patients. The spread of lung cancer screening

and the development of treatment modalities urgently require good

noninvasive biomarkers that can accurately diagnose, classify, and risk

stratify screening and incidentally detected lung nodules. This is made

possible by the development of imaging histology as a new technology

that identifies, extracts, quantifies, and analyzes imaging features from

imaging images to better characterize the phenotype of pulmonary

nodules than is possible with the naked eye. The focus of this article is an

overview of research advances in imaging histology in the differential

diagnosis of pulmonary nodules.

1. Concept and basic process of radiomics

The concept of radiomics was first proposed by Dutch scholar Lambin

in 2012 [8] and aims at high-throughput extraction of objective and

quantitative hard-to-identify radiological features from image data, which

are then transformed into high-dimensional data information. In this way,

image-to-data conversion is achieved, bridging the gap between image

data and precision medicine by enabling broader and deeper mining,

prediction, and analysis of bulk data to help physicians make more

accurate diagnoses [9].

1.1 Acquisition of image data and Segmentation of region of interest
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Collecting image data of interest as a study object is most commonly

done with CT images, and in recent years imaging histology is

increasingly used for other imaging modalities (e.g., MRI, PET,

ultrasound, etc.). The main challenge is that there are no uniform

standards for image acquisition and processing in different institutions.

Different images vary widely in terms of, for example, scanning

equipment, radiation dose, acquisition protocol, pixel size, slice thickness,

use of contrast agents, and post-processing parameters[10]. Therefore,

standardization principles must be followed in image acquisition to

minimize the disruptive effects of image differences [11]. Image

segmentation refers to the delineation of the lesion or area of interest to

be examined and includes three methods of implementation: manual,

semi-automatic, or automatic. Manual segmentation is time-consuming

and has uncertain reproducibility, while automatic segmentation is less

accurate in some specific areas of nodules (hilum, pleura, mediastinum,

etc.). The semi-automatic method, on the other hand, compensates better

for the first two points and is more widely used [12].

1.2 Feature extraction and selection Radiomics feature extraction is

often based on various commercial or open source software packages.

The main features include histogram features, shape features, intensity

features, texture features, and features extracted by various filters.

Histogram features include grayscale mean, maximum, minimum,
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variance, percentile, etc. Texture features include grayscale co-occurrence

matrix, grayscale distance matrix, grayscale region matrix, etc. Shape

features include diameter, perimeter, area, volume, etc. The number of

these features is often huge and there are many irrelevant and redundant

features. To avoid dimensionality disasters, feature selection and

dimensionality reduction methods (such as linear regression, recursive

feature elimination, cluster analysis, and principal component analysis)

can select the most important, repeatable, non-redundant, and relevant

features for later model construction[13].

1.3 Model construction and evaluation An accurate, reliable, and

efficient model is a key factor in the success of radiomics. Common

model analysis methods can be divided into unsupervised and supervised

data analysis. The former include k-means clustering, hierarchical

clustering, and consistent clustering, while the latter include logistic

regression, Cox regression, random forests, support vector machines, and

artificial neural networks. The latter is more commonly used to train

models for predicting unknown data based on data with outcomes, but

current research does not define the optimal method but depends on the

actual classification application [14].

2. Advantages of radiomics for differential diagnosis of pulmonary

nodules

Traditional methods of assessing pulmonary nodules include CT, MRI,
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and F-18 fluorodeoxyglucose (FDG) PET. High-resolution CT and target

scans can provide information about nodule shape, borders, and internal

vascularand bronchial structures. The advantages of this noninvasive,

efficient, and inexpensive method make it the most widely used imaging

examination tool. However, it is difficult to characterize different

imaging modalities by visual assessment, and it is susceptible to human

factors with only moderate agreement[15]. MRI has the merits of

multiparametric imaging, but its lack of resolution and respiratory

artifacts greatly affect it [16]. PET The scan reflects the metabolic

information of the lesion and has high sensitivity for the diagnosis of

benign and malignant lung nodules, but it is limited by its resolution and

the inert state of some smaller lung cancer nodules, with no

discriminatory effect in nodules smaller than 10 mm [17].

Radiomics can tap more image information and integrate the

advantages of multiple diagnostic methods to effectively improve the

correct diagnosis of pulmonary nodules. Liu et al[18] retrospectively

collected and analyzed CT images of 875 patients with pulmonary

nodules and established a radiomics model that can predict the benignity

and malignancy of pulmonary nodules well. The study by Chen et al[19]

also demonstrated the excellent performance of the radiomics model.

Garau et al [20] validated the radiomics model using an external validation

cohort to evaluate the generalization performance and showed that both
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support vector machine and neural network models could accurately

identify benign and malignant lung nodules with AUC values >of 0.89 in

both the coordinated and uncoordinated cohorts of the training set. The

above study demonstrated that the radiomics-based prediction model has

very good accuracy and great potential as a noninvasive tool for

preoperative prediction of benign and malignant lung nodules.

Traditional models for assessing pulmonary nodules often include CT

semantic signs, clinical laboratory factors, and so on. To investigate how

the predictive performance of radiomics compares to traditional models,

Jing et al[21] used unenhanced CT images of patients with pulmonary

nodules for radiomics analysis and combined imaging histologic features

and clinical factors to create a combined model for the diagnosis of

benign and malignant pulmonary nodules with an AUC of 0.940 and a

95% confidence interval of 0.883-0.998, outperforming both the

radiomics model alone and the model with clinical factors and

demonstrating significantly higher accuracy than the Mayo Clinic model.

Choi et al[22] used an imaging histology model constructed with a support

vector machine (SVM) classifier to predict benign and malignant

pulmonary nodules preoperatively and achieved an accuracy of 84.6%,

which was 12.4% higher than that of the American College of Radiology

Lung CT Screening Report and Data System (Lung- RADS). In the field

of pulmonary nodule diagnosis, radiomics can combine several diagnostic
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advantages of imaging and clinical practice to achieve higher predictive

performance compared with conventional assessment models.

Mao et al[23] evaluated the performance of radiomics in the differential

diagnosis of pulmonary nodules of different sizes to identify benign and

malignant isolated small pulmonary nodules with a diameter of 6-15 mm,

and the prediction accuracy of the model reached 89.8%, which was

better than that of Lung- RADS. For the identification of benign and

malignant pulmonary nodules less than 10 mm in diameter, radiological

models based on logistic regression[24] and random forest[25] achieved

excellent performance, while Xu et al[26] divided 373 patients with

collected pulmonary nodules into three groups according to size: T1a (0-1

cm), T1b (1 - 2 cm), and T1c (2 - 3 cm). The radiological characteristics

were studied separately and models were constructed to predict the

benignity and malignancy of the nodules. The results showed that the T1a

group had the best predictive performance (AUC of 0.84: 0.78: 0.79).

This indicates that radiomics takes advantage of the high resolution of CT

and the evaluation performance is not affected by the size of the nodule,

which is still applicable in predicting benign and malignant nodules in

small lung nodules.

3. Application of radiomics in the differential diagnosis of benign and

malignant pulmonary nodules

Most solid lung nodules detected on chest examination CT are benign,
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about 80% are granulomas[27], and it is difficult to identify them with lung

cancer, especially adenocarcinoma of the lung. Both have great

similarities in the site of origin, size, density, CT signs, and even PET

presentation. In contrast, the radiological model created by Orooji et al[28]

based on non-enhanced images from CT was able to distinguish lung

adenocarcinoma well from sarcoidosis (AUC value of 0.77) and

outperformed manual review by an experienced thoracic radiologist (0.69)

and thoracic surgeon (0.72). In another study, [29]an external validation

cohort from different medical institutions was used for evaluation, and

the bar graph prediction model constructed based on 22 radiological

characteristics, gender, and fractal shape had AUCs of 0.885 and 0.808 in

the training and external validation datasets, respectively, which

facilitated the individualized preoperative diagnostic treatment of patients

with pulmonary nodules and confirmed the generalizability of the model.

As part of granulomatous lesions, cryptococcal infections caused by

Cryptococcus novelis or Cryptococcus gattii, which appear as an isolated

nodular pattern, are difficult to distinguish from lung cancer by CT

semantic features, clinical presentation, and laboratory tests[30] Li et al[31]

retrospectively collected 296 asymptomatic patients with negative blood

tests for tumor markers and fungal markers and could not definitively CT

patients with cryptococcosis and lung cancer, who were diagnosed

scanned, constructed local deep-learning models (which contained only
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nodal information), local-global deep-learning models (which contained

nodal and lung conditions), and radiomicroscopy models, with

local-global deep-learning models having the best performance (AUC=

0.88) in distinguishing nodal cryptococcosis from lung cancer. Atypical

tuberculomas often have no particular signs such as calcification and

satellite foci, but show malignant CT signs such as ridge, lobulation,

pleural depression, etc., which are difficult to distinguish from lung

cancer[32]. Feng et al[33] segmented nodules and extracted features from

conventional CT images of 426 patients with tuberculous sarcoidosis and

lung cancer, which appeared as isolated solid nodules. Three independent

predictors of radiologic features, age, and burr sign were used to create a

predictive model for a columellar map that demonstrated better diagnostic

accuracy (AUC=0.966) than any single model for accurately

distinguishing lung cancer from tuberculoma preoperatively. In contrast,

another study[34] used convolutional neural networks to extract deep

learning features (DLS) from patients with lung cancer and tuberculous

sarcoidosis, and found that DLS, gender, age, and fractal shape were

independent predictors and were used to generate deep learning columnar

line graphs with areas under the curve of 0.889, 0.879, and 0.809 for the

training, internal validation, and external validation cohorts, respectively,

which outperformed the radiomics model and the clinical radiology

model.
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The peritumor region represents a dynamic and complex environment

of cellular and noncellular components surrounding the tumor and has

been shown to play an important role in tumor biological behavior such

as cell migration, inflammation, angiogenesis, and aggressiveness[35]. As

part of the lesion, it represents heterogeneity of the lesion that is difficult

to detect with conventional imaging techniques and the human eye.

Radiomics translates this heterogeneity into quantifiable data types for

analysis. Beig et al[36] characterized the heterogeneity of lung cancer and

sarcoidosis using radiomic features of different areas of the peritumoral

regions. Adenocarcinomas were found to express more low-frequency

Gabor features corresponding to their pathologically dense peritumoral

tumor-infiltrating lymphocytes, with a smoother texture at CT. In contrast,

low-frequency Gabor expression in the peri-sarcoma region corresponds

to normal lung tissue with few giant cell nodules in the peritumor region.

The study by Calheiros et al[37] also highlighted the role of the

perinodular region in distinguishing lung cancer from sarcoidosis, and the

radiological model incorporating the features of the perinodular region

was improved in all assessment metrics (AUC of 0.916, accuracy of

84.26%, sensitivity of 84.45%, and specificity of 83.84%). Alilou et al[38]

constructed a radiological scoring system for nodal margins and interface

sharpness (NIS). The AUC of the model improved from 0.77 to 0.84 after

intra-nodal shape and texture features were included, and this study
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showed that NIS correctly reclassified 46% of lung nodules diagnosed as

suspiciously malignant by Lung- RADS but pathologically benign.

In addition to CT, which is most commonly used as the primary source

for radiomics, many studies in recent years have focused on the

application of radiomics to other imaging materials. Multi-parametric

imaging of MRI provides more information about lesions and has good

resolution in soft tissue. A[39] radiomics analysis based on MRI T2WI

images showed that models based on 3D features were superior to 2D

features in predicting benign and malignant solid lung nodules, with AUC

values of more than 0.7 in several combined machine learning methods,

and the best models (AUC=0.84) were generated by recursive feature

elimination and support vector bodies. Wang et al[40] obtained the best

results using T1-weighted, T2-weighted, and apparent diffusion

coefficient (ADC) multiparametric MRI images to extract radiological

features, and the combined model with multiple MRI parameters showed

the highest performance in the test group (AUC 0.88; sensitivity 83%;

accuracy 82%; specificity 79%). Fluorodeoxyglucose positron emission

tomography (FDG-PET) is extremely sensitive and reflects information

about lesion metabolism. Du et al[41] performed a radiological analysis of

PET-CT in 172 patients with pathologically confirmed pulmonary

tuberculomas and lung cancer and introduced conventional CT semantic

features. The predictive model consisting of the combination of both
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features was superior to the radiomic model and the model with the

semantic features CT alone (AUC 0.97: 0.94: 0.91). Chen et al[42] used

the neighborhood gray difference matrix (NGTDM) as a texture feature

on dual time point images (DTPI) PET-CT to discriminate the benignity

and malignancy of isolated solid nodules, and the results showed that the

radiomic model with delayed period PET-CT was a good predictor of

benignity and malignancy of isolated solid nodules, which was superior

to the conventional radiomic and clinical models and SUV indicators.

In summary, in the differential diagnosis of pulmonary nodules, from

general benign and malignant differentiation to more detailed

classification and differentiation of lung cancer nodules from

granulomatous lesions, tuberculomas, and cryptococcal infections, from

purely imaging histologic features to more comprehensive models that

include traditional CT signs, clinical manifestations, and laboratory tests,

from tumor region to peritumor region analysis, and from CT to more

imaging data such as MRI and PET, imaging histology has shown great

potential to effectively aid in the evaluation and treatment of lung

nodules.

4. Challenges and Prospects

CT radiomics has achieved many results in the differential diagnosis of

pulmonary nodules, but as a new technology, there are still some

challenges in some aspects: (1) standardization of imaging data, in
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practice in clinical work, there is some variability between devices and

parameters between different institutions and devices, which may have an

impact on the results. (2) Reproducibility of lesion segmentation. In the

present study, most of the segmentation was performed manually,

introducing a human factor into the computerized process of

radiomicroscopy, and the reproducibility of this process is questionable.

(3) Lack of prospective, multicenter studies with large samples, so

numerous models have been created but have not been widely accepted.

Despite the above challenges, radiomics has seen an increase in

research zeal as an emerging technology that intersects and integrates

multiple disciplines and fields. It is anticipated that with the process of

globalization, the deepening of communication and collaboration among

regions, and the development of computer networks, the acquisition of

multicenter, standardized data with large samples and the application of

reproducible automatic segmentation algorithms will become possible,

and radiomics will improve efficiency, increase diagnostic accuracy, and

support precision medicine on a larger scale.
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